Testing, testing everywhere!

Toni Robres Turdn
@twiindan

fname: Toni Robres}

Three tools for the frontend testers under Ul
Seven for the backend testers in their APIs

Nine for the Performance testers doomed to kill
systems.

One for the dark load of software enginering

One tool to rule them all, One tool never found by
testers...

Untill now

Sometimes diversity is not good

Sometimes diversity is not good

Confrontation

ITiSIONLY(RIPERFORMANCE\TESTERICLICK(ON
mmﬂ gmaienaralor.rn o

Which characteristics
should have the
perfect testing tool?

N
REUSELD
REDUCE
RECYCLE

Testing Activities

. Performance Testing

. Test Definition

Unit Testing

* Nose
— Extended framework for python unit testing
— Easy to write and run tests
— Provides coverage
— Provides profiler
— Test can be organized
— Include tools for testing

from nose.tools import assert_equal
from nose.tools import assert_not_equal

class TestA(object):
@classmethod
def setup_class(cls):
print ("I'm the first method executed in this class")

@classmethod|
def teardown_class(cls):
print ("I'm the last method executed in this class")

def setUp(self):

print ("I'm executed every time before a test is executed")

def teardown(self):
print ("I'm executed every time after a test is executed")

def test_not_equal(self):
string_demo = "Some Value"

assert_not_equal(string_demo, "Incorrect Value")

def test_equal(self):
string_demo = "Some Value"
assert_equal(string_demo, "Some Value")

EXECUTE THE TESTS

(venv)MacBook-Air-de-Antonio~/PycharmProjects/TEFCON:$ nosetests --nocapture
I'm the first method executed in this class

I'm executed every time before a test is executed

I'm executed every time after a test is executed

.I'm executed every time before a test is executed

I'm executed every time after a test is executed

.I'm the last method executed in this class

Ran 2 tests in 0.003s

0K

Coverage

(venv)MacBook-Air-de-Antonio~/PycharmProjects/TEFCON:$ nosetests --with-coverage

Name Stmts Miss Cover Missing
my_fist_module 8 2 75% 8, 10

Ran 3 tests in 0.006s

0K

API| REST Testing

* Request: HTTP For humans
— Library to perform API REST requests
— Easy to use
— Basic and Oauth Authentication s el
— Cookies support
— Multipart Files Upload
— Session objects
— Verify SSL Certificates
— Proxies

— Can be integrated with nose and lettuce

o

0o 0o

10
10

Basic usage

import requests
response = requests.get('http://localhost:8081/v1.0")

response.ok
True

response.status_code
200

response.content
"{"product": "forum", "version": "0.2.0"}'

body = response.json()

body['product']
u'forum’

response_header = response.headers

response_header[' content-type']
'application/json’

Usage
* Query Parameters defined as Python Dict:

payload = {'theme': 'security'}

response = requests.get(url="http://localhost:8081/v1.0/forum', params=payload)

* Custom headers defined as Python Dict

headers = {'content-type': 'application/json'}

response = requests.get(url="http://localhost:8081/v1.0/forum', headers=headers)

Usage

Basic authentication

response = requests.get(url="http://localhost:8081/v1.0/users/inbox/emc2', auth="emc2', 'easy_pwd'))

Content body defined as Python Dict

body = {"name’: "toni', 'role': "QA'}

response = requests.post(url="http://localhost:8081/v1.0/users', data=ujson.dumps(body))

Usage

* Upload a file:

url = "http://localhost:8081/users’

files = {"file': open('eyeos/protractor_tartare_dummy/README.md"', 'rb')}

r = requests.post(url, files=files)
* Cookies

url = "http://httpbin.org/cookies’
cookies = dict(cookies_are="working"')

r = requests.get(url, cookies=cookies)

Web Testing

* Selenium
— Most extended library to test Web GUI
— Suport Firefox, Chrome and Internet Explorer
— Can be integrated with nose and lettuce
— Integrated with Cl
— Grid support
— Cookies support

Selenium

* How it works?

— Locate the Elements
* By id, CSS, XPATH, name, Class...

— Select Elements
* Assert properties

— Interact

* Send keys
* Click

Basic Example

Page Object Pattern

* Language Neutral Pattern for representing a
web page in an Object Oriented manner

* Necessary for survive in Selenium
— Increase maintanability

— Increase readability
— Abstract web page logical from tests

class LoginPage(object):

url = "http://gmail.com"
textbox_username = None
textbox_pwd = None
submit_button = None
driver = None

def (self, driver):
self.driver = driver

def open(self):
self.driver.get(self.url)
self.setLocators()

def setLocators(self):
self.textbox_username = self.driver.find_element_by_name("Email")
self.textbox_pwd = self.driver.find_element_by_name("Passwd")
self.submit_button = self.driver.find_element_by_name("signIn")

def clear_fields(self):

self.textbox_username.clear()
self.pwd.clear()

def type_username(self, username):
self.textbox_username.send_keys(username)

def type_pwd(self, password):
self.textbox_pwd.send_keys(password)

def submit(self):
self.submit_button.click()

Web Testing

* What happen with selenium IDE?

Perfomance Testing

* MultiMechanize

— Runs concurrent Python scripts to generate load
against service

— Reporting Jmeter compatible

— Easy configuration

— Can reuse Custom Request library
— Multithreading and multiprocessing
— Distributed

Config File

Script File

Example script File

Multi Mechanize Stats

test summary

transaction timers

custom timers (from instrumented client code)
time-series/interval data

counts

rate/throughput

response times

average, min, max, stdev

percentiles (80th, 90th, 95th)

Graphs

unt)

=
o
[}
@
]
-
@
o
2]
=

Reque:

40 4]
Elapsed Time In Test (secs)

In Test (secs)

i~

E
T
g=

=

Elaps

L5

(5285) 2w asuodsay

| m\/s

. b; i ,f\:‘-‘

T
L
L
)
k)

E

|_
4l
U
=
o
(=l
il

o

Elapsed Time In Test (secs)

Summarizing

* | can do tests in all Levels:
— Web
— API
— Performance

* What happen with test Definition and test
Execution stats?

Jira / TestLink / IBM

BDD

* Using examples to create a shared
understanding and surface uncertainly to
deliver software that matters.

* Define the software behaviour:

— Given (Preconditions)
— When (actions)
— Then (Post conditions)

Lettuce

BDD Tool for Python

Easy to integrate with tests developed with
Request and Webdriver

Data driven

Using decorators to execute functions that
describes the software behaviour

Feature Example

Scenario Outline: Retrieve the geolocation with city name given

Given a <city> name
When | request the geoencoding of the city
Then | obtain the <city> name with the <country_code>

Examples:
city	country_code
Barcelona	ES
Paris	FR

| San+Francisco | US |

Coding example

Test Runner and report

Scenario Outline: Retrieve the geolocation with city name mi=sspelling
Given a <city>» name

When I request the geoencoding of the city
Then I obtalin the <city> name with the <country code>
Examples:
| city | country code |
Madrit | ES |
I
I

I
| Hadril | ES
| Barcelon | ES

u

SMS

7

Web Usuarios

>

Web Soporte

Backend

L

N

BBDD

Que probar y con que?

/ Acceptance Tests N

(API Layer) \

Unit Tests / Component Tests

Que probar y con que?

Unit testing [l all components

Component test:

— Backend [l] Requests

— Webs [l Webdriver mocking the backend
— Mobile il Appium mocking the backend
Integration:

— Webs and backend

— Mobile and backend
— Backend with SMS plattform

E2E

Bonus Track

* What happen if my component has different
interface than APl REST?

— All the components always have an input

— For example
e Rabbit fl] Pika, Kombu
e MongoDB [l| Pymongo
e Redis [l Python Redis client
* MysQL fll sqlite, sqglalchemy

Overview

* Using Python for all testing activities
— Easy to integrate
— Can reuse common libraries
— Only needs learn one tool
— Collaboration between development and testing
— Community

Result

Questions?

	Slide 1
	{name: Toni Robres}
	Slide 3
	Sometimes diversity is not good
	Sometimes diversity is not good
	Confrontation
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Testing Activities
	Unit Testing
	Slide 15
	Slide 16
	Coverage
	API REST Testing
	Basic usage
	Usage
	Usage
	Usage
	Web Testing
	Selenium
	Basic Example
	Page Object Pattern
	Slide 27
	Slide 28
	Web Testing
	Perfomance Testing
	Config File
	Script File
	Example script File
	Multi Mechanize Stats
	Graphs
	Graphs
	Graphs
	Summarizing
	Jira / TestLink / IBM
	BDD
	Lettuce
	Feature Example
	Coding example
	Test Runner and report
	Slide 45
	Que probar y con que?
	Que probar y con que?
	Bonus Track
	Overview
	Result
	Questions?

